Hybrid nn/hmm-based speech recognition with a discriminant neural feature extraction

Daniel Willett, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In this paper, we present a novel hybrid architecture for continuous speech recognition systems. It consists of a continuous HMM system extended by an arbitrary neural network that is used as a preprocessor that takes several frames of the feature vector as input to produce more discriminative feature vectors with respect to the underlying HMM system. This hybrid system is an extension of a state-of-the-art continuous HMM system, and in fact, it is the first hybrid system that really is capable of outperforming these standard systems with respect to the recognition accuracy. Experimental results show an relative error reduction of about 10% that we achieved on a remarkably good recognition system based on continuous HMMs for the Resource Management 1000-word continuous speech recognition task.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 10 - Proceedings of the 1997 Conference, NIPS 1997
Herausgeber (Verlag)Neural information processing systems foundation
Seiten763-769
Seitenumfang7
ISBN (Print)0262100762, 9780262100762
PublikationsstatusVeröffentlicht - 1998
Extern publiziertJa
Veranstaltung11th Annual Conference on Neural Information Processing Systems, NIPS 1997 - Denver, CO, USA/Vereinigte Staaten
Dauer: 1 Dez. 19976 Dez. 1997

Publikationsreihe

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Konferenz

Konferenz11th Annual Conference on Neural Information Processing Systems, NIPS 1997
Land/GebietUSA/Vereinigte Staaten
OrtDenver, CO
Zeitraum1/12/976/12/97

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hybrid nn/hmm-based speech recognition with a discriminant neural feature extraction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren