Hybrid generative-discriminative nucleus classification of renal cell carcinoma

Aydin Ulaş, Peter J. Schüffler, Manuele Bicego, Umberto Castellani, Vittorio Murino

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this paper, we propose to use advanced classification techniques with shape features for nuclei classification in tissue microarray images of renal cell carcinoma. Our aim is to improve the classification accuracy in distinguishing between healthy and cancerous cells. The approach is inspired by natural language processing: several features are extracted from the automatically segmented nuclei and quantized to visual words, and their co-occurrences are encoded as visual topics. To this end, a generative model, the probabilistic Latent Semantic Analysis (pLSA) is learned from quantized shape descriptors (visual words). Finally, we extract from the learned models a generative score, that is used as input for new classifiers, defining a hybrid generative-discriminative classification algorithm. We compare our results with the same classifiers on the feature set to assess the increase of accuracy when we apply pLSA. We demonstrate that the feature space created using pLSA achieves better accuracies than the original feature space.

OriginalspracheEnglisch
TitelSimilarity-Based Pattern Recognition - First International Workshop, SIMBAD 2011, Proceedings
Seiten77-89
Seitenumfang13
DOIs
PublikationsstatusVeröffentlicht - 2011
Extern publiziertJa
Veranstaltung1st International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2011 - Venice, Italien
Dauer: 28 Sept. 201130 Sept. 2011

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7005 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st International Workshop on Similarity-Based Pattern Recognition, SIMBAD 2011
Land/GebietItalien
OrtVenice
Zeitraum28/09/1130/09/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hybrid generative-discriminative nucleus classification of renal cell carcinoma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren