Hybrid classical-quantum autoencoder for anomaly detection

Alona Sakhnenko, Corey O’Meara, Kumar J.B. Ghosh, Christian B. Mendl, Giorgio Cortiana, Juan Bernabé-Moreno

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

7 Zitate (Scopus)

Abstract

We propose a hybrid classical-quantum autoencoder (HAE) model, which is a synergy of a classical autoencoder (AE) and a parametrized quantum circuit (PQC) that is inserted into its bottleneck. The PQC augments the classical latent space by lifting it to a quantum latent space whereby further data manipulations occur before performing a measurement and collapsing the state to its original classical latent space representation. From this resulting data, a standard outlier detection method is applied to search for anomalous data points within a classical dataset. Using this model and applying it to both standard benchmarking datasets, and a specific use-case dataset, which relates to predictive maintenance of gas power plants, we show that the addition of the PQC to the autoencoder bottleneck leads to a performance enhancement in terms of precision, recall, and F1 score. Furthermore, we probe different PQC Ansätze and analyze which PQC features make them effective for this task.

OriginalspracheEnglisch
Aufsatznummer27
FachzeitschriftQuantum Machine Intelligence
Jahrgang4
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Dez. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hybrid classical-quantum autoencoder for anomaly detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren