HPF-SLAM: An Efficient Visual SLAM System Leveraging Hybrid Point Features

Xin Su, Sebastian Eger, Adam Misik, Dong Yang, Rastin Pries, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Visual SLAM is an essential tool in diverse applications such as robot perception and extended reality, where feature-based methods are prevalent due to their accuracy and robustness. However, existing methods employ either hand-crafted or solely learnable point features and are thus limited by the feature attributes. In this paper, we propose incorporating hybrid point features efficiently into a single system. By integrating hand-crafted and learnable features, we seek to capitalize on their complementary attributes in both key-point identification and descriptor expressiveness. To this purpose, we design a pre-processing module, which includes extraction, inter-class processing, and post-processing of hybrid point features. We present an efficient matching approach to exclusively perform the data association within the same class of features. Moreover, we design a Hybrid Bag-of-Words (H-BoW) model to deal with hybrid point features in matching and loop-closure-detection. By integrating the proposed framework into a modern feature-based system, we introduce HPF-SLAM. We evaluate the system on EuRoC-MAV and TUM-RGBD benchmarks. The experimental results show that our method consistently surpasses the baseline at comparable speed.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten15929-15935
Seitenumfang7
ISBN (elektronisch)9798350384574
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Land/GebietJapan
OrtYokohama
Zeitraum13/05/2417/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „HPF-SLAM: An Efficient Visual SLAM System Leveraging Hybrid Point Features“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren