TY - CHAP
T1 - How Good Are Query Optimizers, Really?
AU - Leis, Viktor
AU - Gubichev, Andrey
AU - Mirchev, Atanas
AU - Boncz, Peter
AU - Kemper, Alfons
AU - Neumann, Thomas
PY - 2016
Y1 - 2016
N2 - Finding a good join order is crucial for query performance. In this paper, we introduce the Join Order Benchmark (JOB) and experimentally revisit the main components in the classic query optimizer architecture using a complex, real-world data set and realistic multi-join queries. We investigate the quality of industrial-strength cardinality estimators and find that all estimators routinely produce large errors. We further show that while estimates are essential for finding a good join order, query performance is unsatisfactory if the query engine relies too heavily on these estimates. Using another set of experiments that measure the impact of the cost model, we find that it has much less influence on query performance than the cardinality estimates. Finally, we investigate plan enumeration techniques comparing exhaustive dynamic programming with heuristic algorithms and find that exhaustive enumeration improves performance despite the sub-optimal cardinality estimates.
AB - Finding a good join order is crucial for query performance. In this paper, we introduce the Join Order Benchmark (JOB) and experimentally revisit the main components in the classic query optimizer architecture using a complex, real-world data set and realistic multi-join queries. We investigate the quality of industrial-strength cardinality estimators and find that all estimators routinely produce large errors. We further show that while estimates are essential for finding a good join order, query performance is unsatisfactory if the query engine relies too heavily on these estimates. Using another set of experiments that measure the impact of the cost model, we find that it has much less influence on query performance than the cardinality estimates. Finally, we investigate plan enumeration techniques comparing exhaustive dynamic programming with heuristic algorithms and find that exhaustive enumeration improves performance despite the sub-optimal cardinality estimates.
UR - http://www.scopus.com/inward/record.url?scp=84975810905&partnerID=8YFLogxK
M3 - Chapter
AN - SCOPUS:84975810905
T3 - Proceedings of the VLDB Endowment
SP - 204
EP - 215
BT - Proceedings of the VLDB Endowment
PB - Association for Computing Machinery
T2 - 42nd International Conference on Very Large Data Bases, VLDB 2016
Y2 - 5 September 2016 through 9 September 2016
ER -