TY - JOUR
T1 - HOLISMOKES
T2 - IX. Neural network inference of strong-lens parameters and uncertainties from ground-based images
AU - Schuldt, S.
AU - Cañameras, R.
AU - Shu, Y.
AU - Suyu, S. H.
AU - Taubenberger, S.
AU - Meinhardt, T.
AU - Leal-Taixé, L.
N1 - Publisher Copyright:
© 2023 The Authors.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Modeling of strong gravitational lenses is a necessity for further applications in astrophysics and cosmology. With the large number of detections in current and upcoming surveys, such as the Rubin Legacy Survey of Space and Time (LSST), it is pertinent to investigate automated and fast analysis techniques beyond the traditional and time-consuming Markov chain Monte Carlo sampling methods. Building upon our (simple) convolutional neural network (CNN), we present here another CNN, specifically a residual neural network (ResNet), that predicts the five mass parameters of a singular isothermal ellipsoid (SIE) profile (lens center x and y, ellipticity ex and ey, Einstein radius θE) and the external shear (γext,1, γext,2) from ground-based imaging data. In contrast to our previous CNN, this ResNet further predicts the 1Ï uncertainty for each parameter. To train our network, we use our improved pipeline to simulate lens images using real images of galaxies from the Hyper Suprime-Cam Survey (HSC) and from the Hubble Ultra Deep Field as lens galaxies and background sources, respectively. We find very good recoveries overall for the SIE parameters, especially for the lens center in comparison to our previous CNN, while significant differences remain in predicting the external shear. From our multiple tests, it appears that most likely the low ground-based image resolution is the limiting factor in predicting the external shear. Given the run time of milli-seconds per system, our network is perfectly suited to quickly predict the next appearing image and time delays of lensed transients. Therefore, we use the network-predicted mass model to estimate these quantities and compare to those values obtained from our simulations. Unfortunately, the achieved precision allows only a first-order estimate of time delays on real lens systems and requires further refinement through follow-up modeling. Nonetheless, our ResNet is able to predict the SIE and shear parameter values in fractions of a second on a single CPU, meaning that we are able to efficiently process the huge amount of galaxy-scale lenses expected in the near future.
AB - Modeling of strong gravitational lenses is a necessity for further applications in astrophysics and cosmology. With the large number of detections in current and upcoming surveys, such as the Rubin Legacy Survey of Space and Time (LSST), it is pertinent to investigate automated and fast analysis techniques beyond the traditional and time-consuming Markov chain Monte Carlo sampling methods. Building upon our (simple) convolutional neural network (CNN), we present here another CNN, specifically a residual neural network (ResNet), that predicts the five mass parameters of a singular isothermal ellipsoid (SIE) profile (lens center x and y, ellipticity ex and ey, Einstein radius θE) and the external shear (γext,1, γext,2) from ground-based imaging data. In contrast to our previous CNN, this ResNet further predicts the 1Ï uncertainty for each parameter. To train our network, we use our improved pipeline to simulate lens images using real images of galaxies from the Hyper Suprime-Cam Survey (HSC) and from the Hubble Ultra Deep Field as lens galaxies and background sources, respectively. We find very good recoveries overall for the SIE parameters, especially for the lens center in comparison to our previous CNN, while significant differences remain in predicting the external shear. From our multiple tests, it appears that most likely the low ground-based image resolution is the limiting factor in predicting the external shear. Given the run time of milli-seconds per system, our network is perfectly suited to quickly predict the next appearing image and time delays of lensed transients. Therefore, we use the network-predicted mass model to estimate these quantities and compare to those values obtained from our simulations. Unfortunately, the achieved precision allows only a first-order estimate of time delays on real lens systems and requires further refinement through follow-up modeling. Nonetheless, our ResNet is able to predict the SIE and shear parameter values in fractions of a second on a single CPU, meaning that we are able to efficiently process the huge amount of galaxy-scale lenses expected in the near future.
KW - Gravitational lensing: strong
KW - Methods: data analysis
UR - http://www.scopus.com/inward/record.url?scp=85150757352&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/202244325
DO - 10.1051/0004-6361/202244325
M3 - Article
AN - SCOPUS:85150757352
SN - 0004-6361
VL - 671
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A147
ER -