HOI4ABOT: Human-Object Interaction Anticipation for Human Intention Reading Collaborative roBOTs

Esteve Valls Mascaro, Daniel Sliwowski, Dongheui Lee

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

Abstract

Robots are becoming increasingly integrated into our lives, assisting us in various tasks. To ensure effective collaboration between humans and robots, it is essential that they understand our intentions and anticipate our actions. In this paper, we propose a Human-Object Interaction (HOI) anticipation framework for collaborative robots. We propose an efficient and robust transformer-based model to detect and anticipate HOIs from videos. This enhanced anticipation empowers robots to proactively assist humans, resulting in more efficient and intuitive collaborations. Our model outperforms state-of-the-art results in HOI detection and anticipation in VidHOI dataset with an increase of 1.76% and 1.04% in mAP respectively while being 15.4 times faster. We showcase the effectiveness of our approach through experimental results in a real robot, demonstrating that the robot's ability to anticipate HOIs is key for better Human-Robot Interaction.

OriginalspracheEnglisch
FachzeitschriftProceedings of Machine Learning Research
Jahrgang229
PublikationsstatusVeröffentlicht - 2023
Extern publiziertJa
Veranstaltung7th Conference on Robot Learning, CoRL 2023 - Atlanta, USA/Vereinigte Staaten
Dauer: 6 Nov. 20239 Nov. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „HOI4ABOT: Human-Object Interaction Anticipation for Human Intention Reading Collaborative roBOTs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren