TY - GEN
T1 - Highly Accelerated Weighted MMSE Precoding Approach for FDD Systems with Incomplete CSI
AU - Amor, Donia Ben
AU - Joham, Michael
AU - Utschick, Wolfgang
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - In this work, we derive a lower bound on the training-based achievable downlink (DL) sum rate (SR) of a multi-user multiple-input-single-output (MISO) system operating in frequency-division-duplex (FDD) mode. Assuming linear minimum mean square error (LMMSE) channel estimation is used, we establish a connection of the derived lower bound on the signal-to-interference-noise-ratio (SINR) to an average MSE that allows to reformulate the SR maximization problem as the minimization of the augmented weighted average MSE (AWAMSE). We propose an iterative precoder design with three alternating steps, all given in closed form, drastically reducing the computation time. We show numerically the effectiveness of the proposed approach in challenging scenarios with limited channel knowledge, i.e., we consider scenarios with a very limited number of pilots. We additionally propose a more efficient version of the well-known stochastic iterative WMMSE (SIWMMSE) approach, where the precoder update is given in closed form.
AB - In this work, we derive a lower bound on the training-based achievable downlink (DL) sum rate (SR) of a multi-user multiple-input-single-output (MISO) system operating in frequency-division-duplex (FDD) mode. Assuming linear minimum mean square error (LMMSE) channel estimation is used, we establish a connection of the derived lower bound on the signal-to-interference-noise-ratio (SINR) to an average MSE that allows to reformulate the SR maximization problem as the minimization of the augmented weighted average MSE (AWAMSE). We propose an iterative precoder design with three alternating steps, all given in closed form, drastically reducing the computation time. We show numerically the effectiveness of the proposed approach in challenging scenarios with limited channel knowledge, i.e., we consider scenarios with a very limited number of pilots. We additionally propose a more efficient version of the well-known stochastic iterative WMMSE (SIWMMSE) approach, where the precoder update is given in closed form.
KW - augmented weighted average MSE
KW - downlink
KW - efficient precoding
KW - FDD
KW - MD MISO
UR - http://www.scopus.com/inward/record.url?scp=85206168485&partnerID=8YFLogxK
U2 - 10.1109/VTC2024-Spring62846.2024.10683390
DO - 10.1109/VTC2024-Spring62846.2024.10683390
M3 - Conference contribution
AN - SCOPUS:85206168485
T3 - IEEE Vehicular Technology Conference
BT - 2024 IEEE 99th Vehicular Technology Conference, VTC2024-Spring 2024 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 99th IEEE Vehicular Technology Conference, VTC2024-Spring 2024
Y2 - 24 June 2024 through 27 June 2024
ER -