Higher-order finite element approximation of the dynamic Laplacian

Nathanael Schilling, Gary Froyland, Oliver Junge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices, and more complicated structures. Two robust and efficient finite-element discretisation schemes for numerically computing the dynamic Laplacian were proposed in Froyland and Junge [SIAM J. Appl. Dyn. Syst. 17 (2018) 1891-1924]. In this work we consider higher-order versions of these two numerical schemes and analyse them experimentally. We also prove the numerically computed eigenvalues and eigenvectors converge to the true objects for both schemes under certain assumptions. We provide an efficient implementation of the higher-order element schemes in an accompanying Julia package.

OriginalspracheEnglisch
Seiten (von - bis)1777-1795
Seitenumfang19
FachzeitschriftMathematical Modelling and Numerical Analysis
Jahrgang54
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Higher-order finite element approximation of the dynamic Laplacian“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren