High-performance geospatial analytics in HyPerSpace

Varun Pandey, Andreas Kipf, Dimitri Vorona, Tobias Mühlbauer, Thomas Neumann, Alfons Kemper

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

20 Zitate (Scopus)

Abstract

In the past few years, massive amounts of location-based data has been captured. Numerous datasets containing user location information are readily available to the public. Analyzing such datasets can lead to fascinating insights into the mobility patterns and behaviors of users. Moreover, in recent times a number of geospatial data-driven companies like Uber, Lyft, and Foursquare have emerged. Real-time analysis of geospatial data is essential and enables an emerging class of applications. Database support for geospatial operations is turning into a necessity instead of a distinct feature provided by only a few databases. Even though a lot of database systems provide geospatial support nowadays, queries often do not consider the most current database state. Geospatial queries are inherently slow given the fact that some of these queries require a couple of geometric computations. Disk-based database systems that do support geospatial datatypes and queries, provide rich features and functions, but they fall behind when performance is considered: specifically if real-time analysis of the latest transactional state is a requirement. In this demonstration, we present HyPerSpace, an extension to the highperformance main-memory database system HyPer developed at the Technical University of Munich, capable of processing geospatial queries with sub-second latencies.

OriginalspracheEnglisch
TitelSIGMOD 2016 - Proceedings of the 2016 International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery
Seiten2145-2148
Seitenumfang4
ISBN (elektronisch)9781450335317
DOIs
PublikationsstatusVeröffentlicht - 26 Juni 2016
Veranstaltung2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016 - San Francisco, USA/Vereinigte Staaten
Dauer: 26 Juni 20161 Juli 2016

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
Band26-June-2016
ISSN (Print)0730-8078

Konferenz

Konferenz2016 ACM SIGMOD International Conference on Management of Data, SIGMOD 2016
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum26/06/161/07/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „High-performance geospatial analytics in HyPerSpace“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren