High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization

Shuo Sun, Malcolm Mielle, Achim J. Lilienthal, Martin Magnusson

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We propose a dense RGBD SLAM system based on 3D Gaussian Splatting that provides metrically accurate pose tracking and visually realistic reconstruction. To this end, we first propose a Gaussian densification strategy based on the rendering loss to map unobserved areas and refine reobserved areas. Second, we introduce extra regularization parameters to alleviate the "forgetting"problem during contiunous mapping, where parameters tend to overfit the latest frame and result in decreasing rendering quality for previous frames. Both mapping and tracking are performed with Gaussian parameters by minimizing re-rendering loss in a differentiable way. Compared to recent neural and concurrently developed Gaussian splatting RGBD SLAM baselines, our method achieves state-of-the-art results on the synthetic dataset Replica and competitive results on the real-world dataset TUM. The code is released on https://github.com/ljjTYJR/HF-SLAM.

OriginalspracheEnglisch
Titel2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten10476-10482
Seitenumfang7
ISBN (elektronisch)9798350377705
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 14 Okt. 202418 Okt. 2024

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Land/GebietVereinigte Arabische Emirate
OrtAbu Dhabi
Zeitraum14/10/2418/10/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren