Hierarchical extraction of independent subspaces of unknown dimensions

Peter Gruber, Harold W. Gutch, Fabian J. Theis

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

5 Zitate (Scopus)

Abstract

Independent Subspace Analysis (ISA) is an extension of Independent Component Analysis (ICA) that aims to linearly transform a random vector such as to render groups of its components mutually independent. A recently proposed fixed-point algorithm is able to locally perform ISA if the sizes of the subspaces are known, however global convergence is a serious problem as the proposed cost function has additional local minima. We introduce an extension to this algorithm, based on the idea that the algorithm converges to a solution, in which subspaces that are members of the global minimum occur with a higher frequency. We show that this overcomes the algorithm's limitations. Moreover, this idea allows a blind approach, where no a priori knowledge of subspace sizes is required.

OriginalspracheEnglisch
Seiten (von - bis)259-266
Seitenumfang8
FachzeitschriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Jahrgang5441
DOIs
PublikationsstatusVeröffentlicht - 2009
Extern publiziertJa
Veranstaltung8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009 - Paraty, Brasilien
Dauer: 15 März 200918 März 2009

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hierarchical extraction of independent subspaces of unknown dimensions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren