Hidden conditional random fields for meeting segmentation

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

29 Zitate (Scopus)

Abstract

Automatic segmentation and classification of recorded meetings provides a basis towards understanding the content of a meeting. It enables effective browsing and querying in a meeting archive. Though robustness of existing approaches is often not reliable enough. We therefore strive to improve on this task by applying conditional random fields augmented by hidden states. These Hidden Conditional Random Fields have been proven to be efficient in low level pattern recognition tasks. Now we propose to use these novel models to segment a pre-recorded meeting into meeting events. Since they can also be seen as an extension to Hidden Markov Models an elaborate comparison of the two approaches is provided. Extensive test runs on the public M4 Scripted Meeting Corpus prove the great performance of applying our suggested novel approach compared to other similar methods.

OriginalspracheEnglisch
TitelProceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007
Herausgeber (Verlag)IEEE Computer Society
Seiten639-642
Seitenumfang4
ISBN (Print)1424410177, 9781424410170
DOIs
PublikationsstatusVeröffentlicht - 2007
VeranstaltungIEEE International Conference onMultimedia and Expo, ICME 2007 - Beijing, China
Dauer: 2 Juli 20075 Juli 2007

Publikationsreihe

NameProceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007

Konferenz

KonferenzIEEE International Conference onMultimedia and Expo, ICME 2007
Land/GebietChina
OrtBeijing
Zeitraum2/07/075/07/07

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hidden conditional random fields for meeting segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren