Heuristic Optimization for Digital Twin Modeling of Existing Bridges from Point Cloud Data by Parametric Prototype Models

M. Saeed Mafipour, Simon Vilgertshofer, André Borrmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Digital twins (DTs) can support the operation and maintenance process of bridges by providing a digital model representing the actual asset in reality. The underlying semantic-geometric model of bridges can be created from point cloud data (PCD), obtained by laser scanning or photogrammetry. The bridge PCD, however, needs to be processed and abstracted to a parametric model to handle geometric updates. Today, this process is conducted manually which in turn increases the geometric modeling costs. This paper aims to automate semantic segmentation and parametric modeling as essential steps in the geometric modeling of bridges. The point cloud of bridges is semantically segmented first through a deep-learning model. The value of parameters is then extracted by a heuristic optimization algorithm. Finally, the model of the entire bridge is created. The results of the paper show that the geometric modeling process of bridges can be automated to a large extent through computational methods.

OriginalspracheEnglisch
TitelComputing in Civil Engineering 2023
UntertitelData, Sensing, and Analytics - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023
Redakteure/-innenYelda Turkan, Joseph Louis, Fernanda Leite, Semiha Ergan
Herausgeber (Verlag)American Society of Civil Engineers (ASCE)
Seiten334-342
Seitenumfang9
ISBN (elektronisch)9780784485224
DOIs
PublikationsstatusVeröffentlicht - 2024
VeranstaltungASCE International Conference on Computing in Civil Engineering 2023: Data, Sensing, and Analytics, i3CE 2023 - Corvallis, USA/Vereinigte Staaten
Dauer: 25 Juni 202328 Juni 2023

Publikationsreihe

NameComputing in Civil Engineering 2023: Data, Sensing, and Analytics - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023

Konferenz

KonferenzASCE International Conference on Computing in Civil Engineering 2023: Data, Sensing, and Analytics, i3CE 2023
Land/GebietUSA/Vereinigte Staaten
OrtCorvallis
Zeitraum25/06/2328/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Heuristic Optimization for Digital Twin Modeling of Existing Bridges from Point Cloud Data by Parametric Prototype Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren