TY - GEN
T1 - HEGN
T2 - 2024 IEEE International Conference on Robotics and Automation, ICRA 2024
AU - Misik, Adam
AU - Salihu, Driton
AU - Su, Xin
AU - Brock, Heike
AU - Steinbach, Eckehard
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - Given its wide application in robotics, point cloud registration is a widely researched topic. Conventional methods aim to find a rotation and translation that align two point clouds in 6 degrees of freedom (DoF). However, certain tasks in robotics, such as category-level pose estimation, involve non-uniformly scaled point clouds, requiring a 9DoF transform for accurate alignment. We propose HEGN, a novel equivariant graph neural network for 9DoF point cloud registration. HEGN utilizes equivariance to rotation, translation, and scaling to estimate the transformation without relying on point correspondences. Based on graph representations for both point clouds, we extract equivariant node features aggregated in their local, cross-, and global context. In addition, we introduce a novel node pooling mechanism that leverages the cross-context importance of nodes to pool the graph representation. By repeating the feature extraction and node pooling, we obtain a graph hierarchy. Finally, we determine rotation and translation by aligning equivariant features aggregated over the graph hierarchy. To estimate scaling, we leverage scale information in the vector norm of the equivariant features. We evaluate the effectiveness of HEGN through experiments with the synthetic ModelNet40 dataset and the real-world ScanObjectNN dataset. The results show the superior performance of HEGN in 9DoF point cloud registration and its competitive performance in conventional 6DoF point cloud registration.
AB - Given its wide application in robotics, point cloud registration is a widely researched topic. Conventional methods aim to find a rotation and translation that align two point clouds in 6 degrees of freedom (DoF). However, certain tasks in robotics, such as category-level pose estimation, involve non-uniformly scaled point clouds, requiring a 9DoF transform for accurate alignment. We propose HEGN, a novel equivariant graph neural network for 9DoF point cloud registration. HEGN utilizes equivariance to rotation, translation, and scaling to estimate the transformation without relying on point correspondences. Based on graph representations for both point clouds, we extract equivariant node features aggregated in their local, cross-, and global context. In addition, we introduce a novel node pooling mechanism that leverages the cross-context importance of nodes to pool the graph representation. By repeating the feature extraction and node pooling, we obtain a graph hierarchy. Finally, we determine rotation and translation by aligning equivariant features aggregated over the graph hierarchy. To estimate scaling, we leverage scale information in the vector norm of the equivariant features. We evaluate the effectiveness of HEGN through experiments with the synthetic ModelNet40 dataset and the real-world ScanObjectNN dataset. The results show the superior performance of HEGN in 9DoF point cloud registration and its competitive performance in conventional 6DoF point cloud registration.
UR - http://www.scopus.com/inward/record.url?scp=85202443347&partnerID=8YFLogxK
U2 - 10.1109/ICRA57147.2024.10610562
DO - 10.1109/ICRA57147.2024.10610562
M3 - Conference contribution
AN - SCOPUS:85202443347
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 6981
EP - 6988
BT - 2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 13 May 2024 through 17 May 2024
ER -