HEGN: Hierarchical Equivariant Graph Neural Network for 9DoF Point Cloud Registration

Adam Misik, Driton Salihu, Xin Su, Heike Brock, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Given its wide application in robotics, point cloud registration is a widely researched topic. Conventional methods aim to find a rotation and translation that align two point clouds in 6 degrees of freedom (DoF). However, certain tasks in robotics, such as category-level pose estimation, involve non-uniformly scaled point clouds, requiring a 9DoF transform for accurate alignment. We propose HEGN, a novel equivariant graph neural network for 9DoF point cloud registration. HEGN utilizes equivariance to rotation, translation, and scaling to estimate the transformation without relying on point correspondences. Based on graph representations for both point clouds, we extract equivariant node features aggregated in their local, cross-, and global context. In addition, we introduce a novel node pooling mechanism that leverages the cross-context importance of nodes to pool the graph representation. By repeating the feature extraction and node pooling, we obtain a graph hierarchy. Finally, we determine rotation and translation by aligning equivariant features aggregated over the graph hierarchy. To estimate scaling, we leverage scale information in the vector norm of the equivariant features. We evaluate the effectiveness of HEGN through experiments with the synthetic ModelNet40 dataset and the real-world ScanObjectNN dataset. The results show the superior performance of HEGN in 9DoF point cloud registration and its competitive performance in conventional 6DoF point cloud registration.

OriginalspracheEnglisch
Titel2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten6981-6988
Seitenumfang8
ISBN (elektronisch)9798350384574
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Land/GebietJapan
OrtYokohama
Zeitraum13/05/2417/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „HEGN: Hierarchical Equivariant Graph Neural Network for 9DoF Point Cloud Registration“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren