Heavy quarkonium suppression in a fireball

Nora Brambilla, Miguel A. Escobedo, Joan Soto, Antonio Vairo

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

106 Zitate (Scopus)

Abstract

We perform a comprehensive study of the time evolution of heavy-quarkonium states in an expanding hot QCD medium by implementing effective field theory techniques in the framework of open quantum systems. The formalism incorporates quarkonium production and its subsequent evolution in the fireball including quarkonium dissociation and recombination. We consider a fireball with a local temperature that is much smaller than the inverse size of the quarkonium and much larger than its binding energy. The calculation is performed at an accuracy that is leading order in the heavy-quark density expansion and next-to-leading order in the multipole expansion. Within this accuracy, for a smooth variation of the temperature and large times, the evolution equation can be written as a Lindblad equation. We solve the Lindblad equation numerically both for a weakly coupled quark-gluon plasma and a strongly coupled medium. As an application, we compute the nuclear modification factor for the (1S) and (2S) states. We also consider the case of static quarks, which can be solved analytically. Our study fulfills three essential conditions: it conserves the total number of heavy quarks, it accounts for the non-Abelian nature of QCD, and it avoids classical approximations.

OriginalspracheEnglisch
Aufsatznummer074504
FachzeitschriftPhysical Review D
Jahrgang97
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 1 Apr. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Heavy quarkonium suppression in a fireball“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren