Heat-content and diffusive leakage from material sets in the low-diffusivity limit

Nathanael Schilling, Daniel Karrasch, Oliver Junge

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

We generalize leading-order asymptotics of a form of the heat content of a submanifold (van den Berg & Gilkey 2015) to the setting of time-dependent diffusion processes in the limit of vanishing diffusivity. Such diffusion processes arise naturally when advection–diffusion processes are viewed in Lagrangian coordinates. We prove that as diffusivity ε goes to zero, the diffusive transport out of a material set S under the time-dependent, mass-preserving advection–diffusion equation with initial condition given by the characteristic function 1S, is √ε/π dA(∂S) + o(√ε). The surface measure dA is that of the so-called geometry of mixing, as introduced in (Karrasch & Keller 2020). We apply our result to the characterisation of coherent structures in time-dependent dynamical systems.

OriginalspracheEnglisch
Seiten (von - bis)7303-7321
Seitenumfang19
FachzeitschriftNonlinearity
Jahrgang34
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - Okt. 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Heat-content and diffusive leakage from material sets in the low-diffusivity limit“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren