HDR Tomography VIA Modulo Radon Transform

Matthias Beckmann, Felix Krahmer, Ayush Bhandari

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

The topic of high dynamic range (HDR) tomography is starting to gain attention due to recent advances in the hardware technology. Registering high-intensity projections that exceed the dynamic range of the detector cause sensor saturation. Existing methods rely on the fusion of multiple exposures. In contrast, we propose a one-shot solution based on the Modulo Radon Transform (MRT). By exploiting the modulo non-linearity, the MRT encodes folded Radon Transform projections so that the resulting measurements do not saturate. Our recovery strategy is pivoted around a property we call compactly \lambda-supported, which is motivated by practice; in many applications the object to be recovered is of finite extent and the measured quantity has approximately compact support. Our theoretical results are illustrated by numerical simulations with an open-access X-ray tomographic dataset and lead to substantial improvement in the HDR recovery problem. For instance, we report recovery of objects with projections 1000x larger in amplitude than the detector threshold.

OriginalspracheEnglisch
Titel2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten3025-3029
Seitenumfang5
ISBN (elektronisch)9781728163956
DOIs
PublikationsstatusVeröffentlicht - Okt. 2020
Veranstaltung2020 IEEE International Conference on Image Processing, ICIP 2020 - Virtual, Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 25 Sept. 202028 Sept. 2020

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2020-October
ISSN (Print)1522-4880

Konferenz

Konferenz2020 IEEE International Conference on Image Processing, ICIP 2020
Land/GebietVereinigte Arabische Emirate
OrtVirtual, Abu Dhabi
Zeitraum25/09/2028/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „HDR Tomography VIA Modulo Radon Transform“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren