HDR Imaging from Quantization Noise

Ayush Bhandari, Felix Krahmer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

28 Zitate (Scopus)

Abstract

Quantization is an integral part of image acquisition but also a major performance bottleneck due to the trade-off between dynamic range and resolution. As we discuss in this paper, in contrast, quantization noise can be acquired reliably even beyond the dynamic range by re-purposing recent hardware development. In this paper, we introduce and mathematically analyze an algorithm to recover images from this information, thus giving rise to a novel, single-shot, high-dynamic-range (HDR) imaging approach. Our method directly works with a refined model for sensor outputs at the digitization stage and crucially exploits smoothing anti-aliasing artifacts. We derive recovery guarantees and demonstrate the validity of our approach via computer experiments. Our work suggests re-thinking of the imaging pipeline as seeming sensing artifacts can lead to improved reconstruction when combined with proper computational methodology.

OriginalspracheEnglisch
Titel2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
Herausgeber (Verlag)IEEE Computer Society
Seiten101-105
Seitenumfang5
ISBN (elektronisch)9781728163956
DOIs
PublikationsstatusVeröffentlicht - Okt. 2020
Veranstaltung2020 IEEE International Conference on Image Processing, ICIP 2020 - Virtual, Abu Dhabi, Vereinigte Arabische Emirate
Dauer: 25 Sept. 202028 Sept. 2020

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
Band2020-October
ISSN (Print)1522-4880

Konferenz

Konferenz2020 IEEE International Conference on Image Processing, ICIP 2020
Land/GebietVereinigte Arabische Emirate
OrtVirtual, Abu Dhabi
Zeitraum25/09/2028/09/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „HDR Imaging from Quantization Noise“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren