Handwritten address recognition using hidden markov models

Anja Brakensiek, Gerhard Rigoll

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

25 Zitate (Scopus)

Abstract

In this paper several aspects of a recognition system for cursive handwritten German address words (cities and streets) are described. The recognition system is based on Hidden Markov Models (HMMs), whereat the focus is on two main problems: the changes in the writing style depending on time or regional differences and the difficulty to select the correct (complete) dictionary for address reading. The first problem leads to the examination of three different adaptation techniques: Maximum Likelihood (ML), Maximum Likelihood Linear Regression (MLLR) and Scaled Likelihood Linear Regression (SLLR). To handle the second problem language models based on backoff character n-grams are examined to evaluate the performance of an open vocabulary recognition (without dictionary). For both problems the determination of confidence measures (based on the frame-normalized likelihood, a garbage model, a two-best recognition or an unconstrained character decoding) is important, either for an unsupervised adaptation or the detection of out of vocabulary words (OOV). The databases, which are used for recognition, are provided by Siemens Dematic (SD) within the Adaptive READ project.

OriginalspracheEnglisch
Seiten (von - bis)103-122
Seitenumfang20
FachzeitschriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Jahrgang2956
DOIs
PublikationsstatusVeröffentlicht - 2004

Fingerprint

Untersuchen Sie die Forschungsthemen von „Handwritten address recognition using hidden markov models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren