Guessing smart: Biased sampling for efficient black-box adversarial attacks

Thomas Brunner, Frederik DIehl, Michael Truong Le, Alois Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

89 Zitate (Scopus)

Abstract

We consider adversarial examples for image classification in the black-box decision-based setting. Here, an attacker cannot access confidence scores, but only the final label. Most attacks for this scenario are either unreliable or inefficient. Focusing on the latter, we show that a specific class of attacks, Boundary Attacks, can be reinterpreted as a biased sampling framework that gains efficiency from domain knowledge. We identify three such biases, image frequency, regional masks and surrogate gradients, and evaluate their performance against an ImageNet classifier. We show that the combination of these biases outperforms the state of the art by a wide margin. We also showcase an efficient way to attack the Google Cloud Vision API, where we craft convincing perturbations with just a few hundred queries. Finally, the methods we propose have also been found to work very well against strong defenses: Our targeted attack won second place in the NeurIPS 2018 Adversarial Vision Challenge.

OriginalspracheEnglisch
TitelProceedings - 2019 International Conference on Computer Vision, ICCV 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten4957-4965
Seitenumfang9
ISBN (elektronisch)9781728148038
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Veranstaltung17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Südkorea
Dauer: 27 Okt. 20192 Nov. 2019

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
Band2019-October
ISSN (Print)1550-5499

Konferenz

Konferenz17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Land/GebietSüdkorea
OrtSeoul
Zeitraum27/10/192/11/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Guessing smart: Biased sampling for efficient black-box adversarial attacks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren