Growth factor release by vesicular phospholipid gels: In-vitro results and application for rotator cuff repair in a rat model

Stefan Buchmann, Gunther H. Sandmann, Lars Walz, Thomas Reichel, Knut Beitzel, Gabriele Wexel, Weiwei Tian, Achim Battmann, Stephan Vogt, Gerhard Winter, Andreas B. Imhoff

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

16 Zitate (Scopus)

Abstract

Background: Biological augmentation of rotator cuff repair is of growing interest to improve biomechanical properties and prevent re-tearing. But intraoperative single shot growth factor application appears not sufficient to provide healing support in the physiologic growth factor expression peaks. The purpose of this study was to establish a sustained release of granulocyte-colony stimulating factor (G-CSF) from injectable vesicular phospholipid gels (VPGs) in vitro and to examine biocompatibility and influence on histology and biomechanical behavior of G-CSF loaded VPGs in a chronic supraspinatus tear rat model. Methods: G-CSF loaded VPGs were produced by dual asymmetric centrifugation. In vitro the integrity, stability and release rate were analyzed. In vivo supraspinatus tendons of 60 rats were detached and after 3 weeks a transosseous refixation with G-CSF loaded VPGs augmentation (n=15; control, placebo, 1 and 10 μg G-CSF/d) was performed. 6 weeks postoperatively the healing site was analyzed histologically (n=9; H&E by modified MOVIN score/Collagen I/III) and biomechanically (n=6). Results: In vitro testing revealed stable proteins after centrifugation and a continuous G-CSF release of up to 4 weeks. Placebo VPGs showed histologically no negative side effects on the healing process. Histologically in vivo testing demonstrated significant advantages for G-CSF 1 μg/d but not for G-CSF 10 μg/d in Collagen III content (p=0.035) and a higher Collagen I/III ratio compared to the other groups. Biomechanically G-CSF 1 μg/d revealed a significant higher load to failure ratio (p=0.020) compared to control but no significant differences in stiffness. Conclusions: By use of VPGs a continuous growth factor release could be obtained in vitro. The in vivo results demonstrate an improvement of immunohistology and biomechanical properties with a low dose G-CSF application via VPG. The VPG itself was well tolerated and had no negative influence on the healing behavior. Due to the favorable properties (highly adhesive, injectable, biocompatible) VPGs are a very interesting option for biologic augmentation. The study may serve as basis for further research in growth factor application models.

OriginalspracheEnglisch
Aufsatznummer82
FachzeitschriftBMC Musculoskeletal Disorders
Jahrgang16
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 10 Apr. 2015

Fingerprint

Untersuchen Sie die Forschungsthemen von „Growth factor release by vesicular phospholipid gels: In-vitro results and application for rotator cuff repair in a rat model“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren