Graphical models for real-time capable gesture recognition

T. Rehrl, N. Theibing, A. Bannat, J. Gast, D. Arsić, F. Wallhoff, G. Rigoll, C. Mayer, B. Radig

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In everyday live head gestures such as head shaking or nodding and hand gestures like pointing gestures form important aspects of human-human interaction. Therefore, recent research considers integrating these intuitive communication cues into technical systems for improving and easing human-computer interaction. In this paper we present a vision-based system to recognize head gestures (nodding, shaking, neutral) and dynamic hand gestures (hand moving right/left/up/down, fist moving right/left) in real-time. The gestural input delivers a communication modality for a human-robot interaction scenario situated in an assistive household environment. The use of fast low-level image-feature extraction methods contributes to the real-time capability of the system and advanced classification approaches relying on Graphical Models provide high robustness. Graphical Models offer the possibility to group the input features in several sub-nodes resulting in a better classification than obtained via a traditional Hidden Markov Model classification. The applied grouping can regard interdependencies owing to, either physical constraints (like for the head gestures), or interrelations between shape and motion (like for the hand gestures).

OriginalspracheEnglisch
Titel2010 IEEE International Conference on Image Processing, ICIP 2010 - Proceedings
Seiten2445-2448
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2010
Veranstaltung2010 17th IEEE International Conference on Image Processing, ICIP 2010 - Hong Kong, Hongkong
Dauer: 26 Sept. 201029 Sept. 2010

Publikationsreihe

NameProceedings - International Conference on Image Processing, ICIP
ISSN (Print)1522-4880

Konferenz

Konferenz2010 17th IEEE International Conference on Image Processing, ICIP 2010
Land/GebietHongkong
OrtHong Kong
Zeitraum26/09/1029/09/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Graphical models for real-time capable gesture recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren