Graphical models for non-negative data using generalized score matching

Shiqing Yu, Mathias Drton, Ali Shojaie

Publikation: KonferenzbeitragPapierBegutachtung

9 Zitate (Scopus)

Abstract

A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. In contrast, the score matching method of Hyvärinen (2005) avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over ℝm. Hyvärinen (2007) extended the approach to distributions supported on the non-negative orthant ℝm+ . In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. We also generalize the regularized score matching method of Lin et al. (2016) for non-negative Gaussian graphical models, with improved theoretical guarantees.

OriginalspracheEnglisch
Seiten1781-1790
Seitenumfang10
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spanien
Dauer: 9 Apr. 201811 Apr. 2018

Konferenz

Konferenz21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018
Land/GebietSpanien
OrtPlaya Blanca, Lanzarote, Canary Islands
Zeitraum9/04/1811/04/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Graphical models for non-negative data using generalized score matching“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren