Graphical methods for efficient likelihood inference in gaussian covariance models

Mathias Drton, Thomas S. Richardson

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

28 Zitate (Scopus)

Abstract

In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.

OriginalspracheEnglisch
Seiten (von - bis)893-914
Seitenumfang22
FachzeitschriftJournal of Machine Learning Research
Jahrgang9
PublikationsstatusVeröffentlicht - Mai 2008
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Graphical methods for efficient likelihood inference in gaussian covariance models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren