Graph-based prediction of missing KPIs through optimization and random forests for KPI systems

Marvin Carl May, Zeyu Fang, Michael B.M. Eitel, Nicole Stricker, Debarghya Ghoshdastidar, Gisela Lanza

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

5 Zitate (Scopus)

Abstract

Key performance indicators (KPIs) are widely used to monitor and control the production in industry. On an aggregated level, often represented as graphs or interrelated KPI systems, a comprehensive overview is given. However, missing or inaccurate sensor data and KPIs, as well inconsistencies in KPI based management are a major hurdle disturbing operations. To counter the impact of such missing KPIs, we propose a value optimization based approach to reconstruct the values of missing KPIs within a KPI system. While the approach shows successful reconstruction in the case study, the value optimization can be sped up through a random forest prediction of the initial optimization set. Thus, the inclusion of previous knowledge about the system behavior proves beneficial and superior to the pure optimization based approach, as validated by both randomized and simulation-based measurement data.

OriginalspracheEnglisch
Seiten (von - bis)211-222
Seitenumfang12
FachzeitschriftProduction Engineering
Jahrgang17
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Graph-based prediction of missing KPIs through optimization and random forests for KPI systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren