Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction

Christiane Sommer, Lu Sang, David Schubert, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

We present Gradient-SDF, a novel representation for 3D geometry that combines the advantages of implict and explicit representations. By storing at every voxel both the signed distance field as well as its gradient vector field, we enhance the capability of implicit representations with approaches originally formulated for explicit surfaces. As concrete examples, we show that (1) the Gradient-SDF allows us to perform direct SDF tracking from depth images, using efficient storage schemes like hash maps, and that (2) the Gradient-SDF representation enables us to perform photometric bundle adjustment directly in a voxel representation (without transforming into a point cloud or mesh), naturally a fully implicit optimization of geometry and camera poses and easy geometry upsampling. Experimental results confirm that this leads to significantly sharper reconstructions. Since the overall SDF voxel structure is still respected, the proposed Gradient-SDF is equally suited for (GPU) parallelization as related approaches.

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten6270-6279
Seitenumfang10
ISBN (elektronisch)9781665469463
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 19 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2022-June
ISSN (Print)1063-6919

Konferenz

Konferenz2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum19/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren