GPU-based nonlocal filtering for large scale SAR processing

Gerald Baier, Xiao Xiang Zhu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In the past few years nonlocal filters have emerged as a serious contender for denoising synthetic aperture radar (SAR) images, offering superior noise reduction and detail preservation compared to many other filters. In this manuscript we analyze how nonlocal filters, whose computational costs were so far prohibitive for large scale processing, can be implemented efficiently on graphics processing units (GPU). As a case study NL-SAR, a state of the art SAR filter, is implemented to run on a NVIDIA Tesla K40. We describe the appeal of GPUs, or any other coprocessor, for nonlocal filters. Nonlocal filtering of TanDEM-X interferograms for generating digital elevation models with a higher resolution and accuracy is given as an application that benefits from efficient and fast nonlocal filtering.

OriginalspracheEnglisch
Titel2016 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten7608-7611
Seitenumfang4
ISBN (elektronisch)9781509033324
DOIs
PublikationsstatusVeröffentlicht - 1 Nov. 2016
Extern publiziertJa
Veranstaltung36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016 - Beijing, China
Dauer: 10 Juli 201615 Juli 2016

Publikationsreihe

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Band2016-November

Konferenz

Konferenz36th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2016
Land/GebietChina
OrtBeijing
Zeitraum10/07/1615/07/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „GPU-based nonlocal filtering for large scale SAR processing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren