Global sensitivity analysis in high dimensions with partial least squares-driven PCEs

Max Ehre, Iason Papaioannou, Daniel Straub

Publikation: KonferenzbeitragPapierBegutachtung

Abstract

We develop an efficient method for the computation of variance-based sensitivity indices using a recently introduced latent-variable-based polynomial chaos expansion, which is particularly suitable for high dimensional problems. By back-transforming the surrogate from its latent variable space-basis to the original input variable space-basis, we derive analytical expressions for these sensitivities that only depend on the model coefficients. Thus, once the surrogate model is built, the variance-based sensitivities can be computed at negligible computational cost as no additional sampling is required. The accuracy of the method is demonstrated with a numerical experiment of an elastic truss.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2019
Veranstaltung13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP 2019 - Seoul, Südkorea
Dauer: 26 Mai 201930 Mai 2019

Konferenz

Konferenz13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP 2019
Land/GebietSüdkorea
OrtSeoul
Zeitraum26/05/1930/05/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Global sensitivity analysis in high dimensions with partial least squares-driven PCEs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren