Global Property Prediction: A Benchmark Study on Open-Source, Perovskite-like Datasets

Felix Mayr, Alessio Gagliardi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

8 Zitate (Scopus)

Abstract

Screening combinatorial space for novel materials, such as perovskite-like ones for photovoltaics, has resulted in a high amount of simulated high-throughput data and analysis thereof. This study proposes a comprehensive comparison of structural fingerprint-based machine learning models on seven open-source databases of perovskite-like materials to predict band gaps and energies. It shows that none of the given methods, including graph neural networks, are able to capture arbitrary databases evenly, while underlining that commonly used metrics are highly database-dependent in typical workflows. In addition, the applicability of variance selection and autoencoders to significantly reduce fingerprint size indicates that models built with common fingerprints only rely on a submanifold of the available fingerprint space.

OriginalspracheEnglisch
Seiten (von - bis)12722-12732
Seitenumfang11
FachzeitschriftACS Omega
Jahrgang6
Ausgabenummer19
DOIs
PublikationsstatusVeröffentlicht - 18 Mai 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „Global Property Prediction: A Benchmark Study on Open-Source, Perovskite-like Datasets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren