TY - JOUR
T1 - Genetic ablation of Cullin-RING E3 ubiquitin ligase 7 restrains pressure overload-induced myocardial fibrosis
AU - Anger, Melanie
AU - Scheufele, Florian
AU - Ramanujam, Deepak
AU - Meyer, Kathleen
AU - Nakajima, Hidehiro
AU - Field, Loren J.
AU - Engelhardt, Stefan
AU - Sarikas, Antonio
N1 - Publisher Copyright:
© 2020 Anger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/12
Y1 - 2020/12
N2 - Fibrosis is a pathognomonic feature of structural heart disease and counteracted by distinct cardioprotective mechanisms, e.g. activation of the phosphoinositide 3-kinase (PI3K) / AKT pro-survival pathway. The Cullin-RING E3 ubiquitin ligase 7 (CRL7) was identified as negative regulator of PI3K/AKT signalling in skeletal muscle, but its role in the heart remains to be elucidated. Here, we sought to determine whether CRL7 modulates to cardiac fibrosis following pressure overload and dissect its underlying mechanisms. For inactivation of CRL7, the Cullin 7 (Cul7) gene was deleted in cardiac myocytes (CM) by injection of adeno-associated virus subtype 9 (AAV9) vectors encoding codon improved Cre-recombinase (AAV9-CMV-iCre) in Cul7flox/flox mice. In addition, Myosin Heavy Chain 6 (Myh6; alpha-MHC)-MerCreMer transgenic mice with tamoxifen-induced CM-specific expression of iCre were used as alternate model. After transverse aortic constriction (TAC), causing chronic pressure overload and fibrosis, AAV9-CMV-iCre induced Cul7-/- mice displayed a ~50% reduction of interstitial cardiac fibrosis when compared to Cul7+/+ animals (6.7% vs. 3.4%, p<0.01). Similar results were obtained with Cul7flox/flox Myh6-Mer-Cre-MerTg(1/0) mice which displayed a ~30% reduction of cardiac fibrosis after TAC when compared to Cul7+/+ Myh6-Mer-Cre-MerTg(1/0) controls after TAC surgery (12.4% vs. 8.7%, p<0.05). No hemodynamic alterations were observed. AKTSer473 phosphorylation was increased 3-fold (p<0.01) in Cul7-/- vs. control mice, together with a ~78% (p<0.001) reduction of TUNEL-positive apoptotic cells three weeks after TAC. In addition, CM-specific expression of a dominant-negative CUL71152stop mutant resulted in a 16.3-fold decrease (p<0.001) of in situ end-labelling (ISEL) positive apoptotic cells. Collectively, our data demonstrate that CM-specific ablation of Cul7 restrains myocardial fibrosis and apoptosis upon pressure overload, and introduce CRL7 as a potential target for anti-fibrotic therapeutic strategies of the heart.
AB - Fibrosis is a pathognomonic feature of structural heart disease and counteracted by distinct cardioprotective mechanisms, e.g. activation of the phosphoinositide 3-kinase (PI3K) / AKT pro-survival pathway. The Cullin-RING E3 ubiquitin ligase 7 (CRL7) was identified as negative regulator of PI3K/AKT signalling in skeletal muscle, but its role in the heart remains to be elucidated. Here, we sought to determine whether CRL7 modulates to cardiac fibrosis following pressure overload and dissect its underlying mechanisms. For inactivation of CRL7, the Cullin 7 (Cul7) gene was deleted in cardiac myocytes (CM) by injection of adeno-associated virus subtype 9 (AAV9) vectors encoding codon improved Cre-recombinase (AAV9-CMV-iCre) in Cul7flox/flox mice. In addition, Myosin Heavy Chain 6 (Myh6; alpha-MHC)-MerCreMer transgenic mice with tamoxifen-induced CM-specific expression of iCre were used as alternate model. After transverse aortic constriction (TAC), causing chronic pressure overload and fibrosis, AAV9-CMV-iCre induced Cul7-/- mice displayed a ~50% reduction of interstitial cardiac fibrosis when compared to Cul7+/+ animals (6.7% vs. 3.4%, p<0.01). Similar results were obtained with Cul7flox/flox Myh6-Mer-Cre-MerTg(1/0) mice which displayed a ~30% reduction of cardiac fibrosis after TAC when compared to Cul7+/+ Myh6-Mer-Cre-MerTg(1/0) controls after TAC surgery (12.4% vs. 8.7%, p<0.05). No hemodynamic alterations were observed. AKTSer473 phosphorylation was increased 3-fold (p<0.01) in Cul7-/- vs. control mice, together with a ~78% (p<0.001) reduction of TUNEL-positive apoptotic cells three weeks after TAC. In addition, CM-specific expression of a dominant-negative CUL71152stop mutant resulted in a 16.3-fold decrease (p<0.001) of in situ end-labelling (ISEL) positive apoptotic cells. Collectively, our data demonstrate that CM-specific ablation of Cul7 restrains myocardial fibrosis and apoptosis upon pressure overload, and introduce CRL7 as a potential target for anti-fibrotic therapeutic strategies of the heart.
UR - http://www.scopus.com/inward/record.url?scp=85098979564&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0244096
DO - 10.1371/journal.pone.0244096
M3 - Article
C2 - 33351822
AN - SCOPUS:85098979564
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 12 December 2020
M1 - e0244096
ER -