Generalized nonnegative matrix approximations with Bregman divergences

Inderjit S. Dhillon, Suvrit Sra

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

338 Zitate (Scopus)

Abstract

Nonnegative matrix approximation (NNMA) is a recent technique for dimensionality reduction and data analysis that yields a parts based, sparse nonnegative representation for nonnegative input data. NNMA has found a wide variety of applications, including text analysis, document clustering, face/image recognition, language modeling, speech processing and many others. Despite these numerous applications, the algorithmic development for computing the NNMA factors has been relatively deficient. This paper makes algorithmic progress by modeling and solving (using multiplicative updates) new generalized NNMA problems that minimize Bregman divergences between the input matrix and its low-rank approximation. The multiplicative update formulae in the pioneering work by Lee and Seung [11] arise as a special case of our algorithms. In addition, the paper shows how to use penalty functions for incorporating constraints other than nonnegativity into the problem. Further, some interesting extensions to the use of "link" functions for modeling nonlinear relationships are also discussed.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 18 - Proceedings of the 2005 Conference
Seiten283-290
Seitenumfang8
PublikationsstatusVeröffentlicht - 2005
Extern publiziertJa
Veranstaltung2005 Annual Conference on Neural Information Processing Systems, NIPS 2005 - Vancouver, BC, Kanada
Dauer: 5 Dez. 20058 Dez. 2005

Publikationsreihe

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Konferenz

Konferenz2005 Annual Conference on Neural Information Processing Systems, NIPS 2005
Land/GebietKanada
OrtVancouver, BC
Zeitraum5/12/058/12/05

Fingerprint

Untersuchen Sie die Forschungsthemen von „Generalized nonnegative matrix approximations with Bregman divergences“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren