Generalization of spectral methods for high-cycle fatigue analysis to accommodate non-stationary random processes

Mohamed Khalil, Roland Wüchner, Kai Uwe Bletzinger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Estimation of material fatigue life is an essential task in many engineering fields. When non-proportional loads are applied, the methodology to estimate fatigue life grows in complexity. Many methods have been proposed to solve this problem both in time and frequency domains. The former tends to give more accurate results, while the latter seems to be more computationally favorable. Until now, the focus of frequency-based methods has been limited to signals assumed to follow a stationary statistic process. This work proposes a generalization to the existing methods to accommodate non-stationary processes as well. A sensitivity analysis is conducted on the influence of the formulation’s hyper-parameters, followed by a numerical investigation on different signals and various materials to assert the robustness of the method.

OriginalspracheEnglisch
TitelAdvanced Driver Assistance and Autonomous Technologies; Advances in Control Design Methods; Advances in Robotics; Automotive Systems; Design, Modeling, Analysis, and Control of Assistive and Rehabilitation Devices; Diagnostics and Detection; Dynamics and Control of Human-Robot Systems; Energy Optimization for Intelligent Vehicle Systems; Estimation and Identification; Manufacturing
Herausgeber (Verlag)American Society of Mechanical Engineers (ASME)
ISBN (elektronisch)9780791859148
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungASME 2019 Dynamic Systems and Control Conference, DSCC 2019 - Park City, USA/Vereinigte Staaten
Dauer: 8 Okt. 201911 Okt. 2019

Publikationsreihe

NameASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Band1

Konferenz

KonferenzASME 2019 Dynamic Systems and Control Conference, DSCC 2019
Land/GebietUSA/Vereinigte Staaten
OrtPark City
Zeitraum8/10/1911/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Generalization of spectral methods for high-cycle fatigue analysis to accommodate non-stationary random processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren