Gender-and age-related changes in trunk muscle composition using chemical shift encoding-based water–fat MRI

Egon Burian, Jan Syväri, Christina Holzapfel, Theresa Drabsch, Jan S. Kirschke, Ernst J. Rummeny, Claus Zimmer, Hans Hauner, Dimitrios C. Karampinos, Thomas Baum, Daniela Franz

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

24 Zitate (Scopus)

Abstract

Ageing, sarcopenia, and malnutrition are associated with quantitative and qualitative changes of body composition. There are several imaging modalities, including magnetic resonance imaging (MRI), for the assessment of trunk muscle tissue composition. In this study, we investigated the gender-and age-related changes in trunk muscle composition using chemical shift encoding-based water–fat MRI. A total of 79 healthy volunteers (26 men: 38.9 ± 10.4 years; 53 women: 39.5 ± 15.0 years) underwent 3T axial MRI using a six-echo multi-echo 3D spoiled gradient echo sequence, allowing for the calculation of the proton density fat fraction (PDFF) in the trunk muscles. PDFF of the abdominal, psoas, and erector spinae muscles were determined. We detected significant positive correlations for abdominal muscle PDFF with age (r = 0.638, p = 0.0001) in men, and for abdominal muscle PDFF (r = 0.709, p = 0.0001) and erector spinae muscle PDFF (r = 0.674, p = 0.0001) with age in women. After adjustment for body mass index (BMI), only the correlation of age and abdominal muscle PDFF in women remained significant (r = 0.631, p = 0.0001). The findings of this study suggest that an increasing fat deposition in muscle is driven primarily by age, rather than BMI, in women. These results further support that PDFF can be considered a valid imaging biomarker of trunk muscle composition.

OriginalspracheEnglisch
Aufsatznummer1972
FachzeitschriftNutrients
Jahrgang10
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 13 Dez. 2018
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gender-and age-related changes in trunk muscle composition using chemical shift encoding-based water–fat MRI“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren