Gaussian process gradient maps for loop-closure detection in unstructured planetary environments

Cedric Le Gentil, Mallikarjuna Vayugundla, Riccardo Giubilato, Wolfgang Sturzl, Teresa Vidal-Calleja, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

The ability to recognize previously mapped locations is an essential feature for autonomous systems. Unstructured planetary-like environments pose a major challenge to these systems due to the similarity of the terrain. As a result, the ambiguity of the visual appearance makes state-of-the-art visual place recognition approaches less effective than in urban or man-made environments. This paper presents a method to solve the loop closure problem using only spatial information. The key idea is to use a novel continuous and probabilistic representations of terrain elevation maps. Given 3D point clouds of the environment, the proposed approach exploits Gaussian Process (GP) regression with linear operators to generate continuous gradient maps of the terrain elevation information. Traditional image registration techniques are then used to search for potential matches. Loop closures are verified by leveraging both the spatial characteristic of the elevation maps (SE (2) registration) and the probabilistic nature of the GP representation. A submap-based localization and mapping framework is used to demonstrate the validity of the proposed approach. The performance of this pipeline is evaluated and benchmarked using real data from a rover that is equipped with a stereo camera and navigates in challenging, unstructured planetary-like environments in Morocco and on Mt. Etna.

OriginalspracheEnglisch
Titel2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1895-1902
Seitenumfang8
ISBN (elektronisch)9781728162126
DOIs
PublikationsstatusVeröffentlicht - 24 Okt. 2020
Veranstaltung2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, USA/Vereinigte Staaten
Dauer: 24 Okt. 202024 Jan. 2021

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Land/GebietUSA/Vereinigte Staaten
OrtLas Vegas
Zeitraum24/10/2024/01/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gaussian process gradient maps for loop-closure detection in unstructured planetary environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren