Gaussian Process-Based Real-Time Learning for Safety Critical Applications

Armin Lederer, Alejandro José Ordóñez Conejo, Korbinian Maier, Wenxin Xiao, Jonas Umlauft, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

20 Zitate (Scopus)

Abstract

The safe operation of physical systems typically relies on high-quality models. Since a continuous stream of data is generated during run-time, such models are often obtained through the application of Gaussian process regression because it provides guarantees on the prediction error. Due to its high computational complexity, Gaussian process regression must be used offline on batches of data, which prevents applications, where a fast adaptation through online learning is necessary to ensure safety. In order to overcome this issue, we propose the LoG-GP. It achieves a logarithmic update and prediction complexity in the number of training points through the aggregation of locally active Gaussian process models. Under weak assumptions on the aggregation scheme, it inherits safety guarantees from exact Gaussian process regression. These theoretical advantages are exemplarily exploited in the design of a safe and data-efficient, online-learning control policy. The efficiency and performance of the proposed real-time learning approach is demonstrated in a comparison to state-of-the-art methods.

OriginalspracheEnglisch
TitelProceedings of the 38th International Conference on Machine Learning, ICML 2021
Herausgeber (Verlag)ML Research Press
Seiten6055-6064
Seitenumfang10
ISBN (elektronisch)9781713845065
PublikationsstatusVeröffentlicht - 2021
Veranstaltung38th International Conference on Machine Learning, ICML 2021 - Virtual, Online
Dauer: 18 Juli 202124 Juli 2021

Publikationsreihe

NameProceedings of Machine Learning Research
Band139
ISSN (elektronisch)2640-3498

Konferenz

Konferenz38th International Conference on Machine Learning, ICML 2021
OrtVirtual, Online
Zeitraum18/07/2124/07/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gaussian Process-Based Real-Time Learning for Safety Critical Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren