Gas Distribution Mapping With Radius-Based, Bi-directional Graph Neural Networks (RABI-GNN)

Nicolas P. Winkler, Patrick P. Neumann, Erik Schaffernicht, Achim J. Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Gas Distribution Mapping (GDM) is essential in monitoring hazardous environments, where uneven sampling and spatial sparsity of data present significant challenges. Traditional methods for GDM often fall short in accuracy and expressiveness. Modern learning-based approaches employing Convolutional Neural Networks (CNNs) require regular-sized input data, limiting their adaptability to irregular and sparse datasets typically encountered in GDM. This study addresses these shortcomings by showcasing Graph Neural Networks (GNNs) for learning-based GDM on irregular and spatially sparse sensor data. Our Radius-Based, Bi-Directionally connected GNN (RABI-GNN) was trained on a synthetic gas distribution dataset on which it outperforms our previous CNN-based model while overcoming its constraints. We demonstrate the flexibility of RABI-GNN by applying it to real-world data obtained in an industrial steel factory, highlighting promising opportunities for more accurate GDM models.

OriginalspracheEnglisch
TitelISOEN 2024 - International Symposium on Olfaction and Electronic Nose, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350348651
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2024 - Grapevine, USA/Vereinigte Staaten
Dauer: 12 Mai 202415 Mai 2024

Publikationsreihe

NameISOEN 2024 - International Symposium on Olfaction and Electronic Nose, Proceedings

Konferenz

Konferenz2024 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2024
Land/GebietUSA/Vereinigte Staaten
OrtGrapevine
Zeitraum12/05/2415/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gas Distribution Mapping With Radius-Based, Bi-directional Graph Neural Networks (RABI-GNN)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren