Gait energy image reconstruction from degraded gait cycle using deep learning

Maryam Babaee, Linwei Li, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Gait energy image (GEI) is considered as an effective gait representation for gait-based human identification. In gait recognition, normally, GEI is computed from one full gait cycle. However in many circumstances, such a full gait cycle might not be available due to occlusion. Thus, the GEI is not complete, giving a rise to degrading gait identification rate. In this paper, we address this issue by proposing a novel method to reconstruct a complete GEI from a few frames of gait cycle. To do so, we propose a deep learning-based approach to transform incomplete GEI to the corresponding complete GEI obtained from a full gait cycle. More precisely, this transformation is done gradually by training several fully convolutional networks independently and then combining these as a uniform model. Experimental results on a large public gait dataset, namely OULP demonstrate the validity of the proposed method for gait identification when dealing with very incomplete gait cycles.

OriginalspracheEnglisch
TitelComputer Vision – ECCV 2018 Workshops, Proceedings
Redakteure/-innenLaura Leal-Taixé, Stefan Roth
Herausgeber (Verlag)Springer Verlag
Seiten654-658
Seitenumfang5
ISBN (Print)9783030110178
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung15th European Conference on Computer Vision, ECCV 2018 - Munich, Deutschland
Dauer: 8 Sept. 201814 Sept. 2018

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11132 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz15th European Conference on Computer Vision, ECCV 2018
Land/GebietDeutschland
OrtMunich
Zeitraum8/09/1814/09/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Gait energy image reconstruction from degraded gait cycle using deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren