Fusing probe speed and flow data for robust short-term congestion front forecasts

Felix Rempe, Lisa Kessler, Klaus Bogenberger

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

In this paper a robust and flexible method is proposed that combines the strengths of detector as well as Floating Car (FC) data in order to provide short-term congestion front forecasts. Based on the high spatio-temporal resolution of FC data, congested regimes and according congestion fronts are identified accurately. Subsequently, the flow data provided by loop detectors are utilized in order to predict these congestion fronts for a time horizon of up to ten minutes. Three variations of the method are presented which focus the difficulty of estimating traffic density in congested traffic conditions with given data. The evaluation is based on real FC as well as loop detector data collected during a congestion on the German Autobahn A9. Comparisons of the variants of the proposed method and a naive predictor emphasize the advantage of combining both data sources and point out the strategy that results in the most accurate front forecasts.

OriginalspracheEnglisch
Titel5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten31-36
Seitenumfang6
ISBN (elektronisch)9781509064847
DOIs
PublikationsstatusVeröffentlicht - 8 Aug. 2017
Extern publiziertJa
Veranstaltung5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Naples, Italien
Dauer: 26 Juni 201728 Juni 2017

Publikationsreihe

Name5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017 - Proceedings

Konferenz

Konferenz5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017
Land/GebietItalien
OrtNaples
Zeitraum26/06/1728/06/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fusing probe speed and flow data for robust short-term congestion front forecasts“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren