Fully convolutional networks in medical imaging: Applications to image enhancement and recognition

Christian F. Baumgartner, Ozan Oktay, Daniel Rueckert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

7 Zitate (Scopus)

Abstract

Convolutional neural networks (CNNs) are hierarchical models that have immense representational capacity and have been successfully applied to computer vision problems including object localisation, classification and super-resolution. A particular example of CN Nmodels, knownas fully convolutional network (FCN), has been shown to offer improved computational efficiency and representation learning capabilities due to simplermodel parametrisation and spatial consistency of extracted features. In this chapter, we demonstrate the power and applicability of this particular model on two medical imaging tasks, image enhancement via super-resolution and image recognition. In both examples, experimental results show that FCN models can significantly outperform traditional learning-based approaches while achieving real-time performance. Additionally, we demonstrate that the proposed image classification FCN model can be used in organ localisation task as well without requiring additional training data.

OriginalspracheEnglisch
TitelAdvances in Computer Vision and Pattern Recognition
Herausgeber (Verlag)Springer London
Seiten159-179
Seitenumfang21
Auflage9783319429984
DOIs
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa

Publikationsreihe

NameAdvances in Computer Vision and Pattern Recognition
Nummer9783319429984
ISSN (Print)2191-6586
ISSN (elektronisch)2191-6594

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fully convolutional networks in medical imaging: Applications to image enhancement and recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren