From particle swarm optimization to consensus based optimization: Stochastic modeling and mean-field limit

Sara Grassi, Lorenzo Pareschi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

27 Zitate (Scopus)

Abstract

In this paper, we consider a continuous description based on stochastic differential equations of the popular particle swarm optimization (PSO) process for solving global optimization problems and derive in the large particle limit the corresponding mean-field approximation based on Vlasov-Fokker-Planck-type equations. The disadvantage of memory effects induced by the need to store the local best position is overcome by the introduction of an additional differential equation describing the evolution of the local best. A regularization process for the global best permits to formally derive the respective mean-field description. Subsequently, in the small inertia limit, we compute the related macroscopic hydrodynamic equations that clarify the link with the recently introduced consensus based optimization (CBO) methods. Several numerical examples illustrate the mean field process, the small inertia limit and the potential of this general class of global optimization methods.

OriginalspracheEnglisch
Seiten (von - bis)1625-1657
Seitenumfang33
FachzeitschriftMathematical Models and Methods in Applied Sciences
Jahrgang31
Ausgabenummer8
DOIs
PublikationsstatusVeröffentlicht - Juli 2021
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „From particle swarm optimization to consensus based optimization: Stochastic modeling and mean-field limit“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren