TY - GEN
T1 - From Booking Data to Demand Knowledge Unconstraining Carsharing Demand
AU - Hardt, Cornelius
AU - Bogenberger, Klaus
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - Since the introduction of free-floating carsharing (FFCS), system optimization has always been a crucial point in operations. Especially knowledge about the usage of such systems allows for a better understanding, leading to maximized utilization and therefore revenue. In order to understand demand for FFCS services, most often rental data is utilized. However, utilizing such data yields systematic underreporting of demand, since lack of vehicles obstructs counting real demand. In this paper we present an unconstraining algorithm for FFCS system analysis, called Pois-d, that minimizes demand underreporting in rental data due to unavailability. Evaluation of this algorithm shows that it approximates actual demand, reduces underreporting by up to 70% compared to utilizing solely rental data, and reduces error measures by up to 26% as well. Applying Pois-d to real world data, the size of undetected potential in FFCS systems is illustrated. Therefore, the analysis of four areas from the business area of an FFCS provider is presented. Results reveal potential markups on pure rental data of up to 90%. Adjusting demand data for these systems with this algorithm can help to optimize operative measures like vehicle reallocation, adjustment of pricing systems, and planning of business areas.
AB - Since the introduction of free-floating carsharing (FFCS), system optimization has always been a crucial point in operations. Especially knowledge about the usage of such systems allows for a better understanding, leading to maximized utilization and therefore revenue. In order to understand demand for FFCS services, most often rental data is utilized. However, utilizing such data yields systematic underreporting of demand, since lack of vehicles obstructs counting real demand. In this paper we present an unconstraining algorithm for FFCS system analysis, called Pois-d, that minimizes demand underreporting in rental data due to unavailability. Evaluation of this algorithm shows that it approximates actual demand, reduces underreporting by up to 70% compared to utilizing solely rental data, and reduces error measures by up to 26% as well. Applying Pois-d to real world data, the size of undetected potential in FFCS systems is illustrated. Therefore, the analysis of four areas from the business area of an FFCS provider is presented. Results reveal potential markups on pure rental data of up to 90%. Adjusting demand data for these systems with this algorithm can help to optimize operative measures like vehicle reallocation, adjustment of pricing systems, and planning of business areas.
UR - http://www.scopus.com/inward/record.url?scp=85099646092&partnerID=8YFLogxK
U2 - 10.1109/ITSC45102.2020.9294413
DO - 10.1109/ITSC45102.2020.9294413
M3 - Conference contribution
AN - SCOPUS:85099646092
T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Y2 - 20 September 2020 through 23 September 2020
ER -