Framework for Learning a Hand Intent Recognition Model from sEMG for FES-Based control

Neha Das, Satoshi Endo, Hossein Kavianirad, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Stroke survivors and individuals with neuromus-cular disorders often experience motor function impairments, particularly during hand movements crucial for activities of daily living (ADL). Functional Electrical Stimulation (FES) has emerged as a potential assistive and rehabilitative technique to address these limitations. However, accurately determining user intent during FES poses a significant challenge. This work proposes a framework for rapidly learning a model of the user's hand intent from surface electromyography (sEMG) signals, specifically for continuous FES-based control of the ipsilateral hand. The framework systematically collects data from expected volitional and FES-evoked hand motions, followed by training a logistic regression model for intent classification. The study demonstrates that the proposed model can learn from limited data and compares favorably to deep neural nets trained on the same dataset. This model is able to recognize user intent with high accuracy even during concurrent FES stimulation.

OriginalspracheEnglisch
Titel2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten1320-1327
Seitenumfang8
ISBN (elektronisch)9798350386523
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024 - Heidelberg, Deutschland
Dauer: 1 Sept. 20244 Sept. 2024

Publikationsreihe

NameProceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
ISSN (Print)2155-1774

Konferenz

Konferenz10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics, BioRob 2024
Land/GebietDeutschland
OrtHeidelberg
Zeitraum1/09/244/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Framework for Learning a Hand Intent Recognition Model from sEMG for FES-Based control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren