FPGA-based data partitioning

Kaan Kara, Jana Giceva, Gustavo Alonso

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

44 Zitate (Scopus)

Abstract

Implementing parallel operators in multi-core machines often involves a data partitioning step that divides the data into cache-size blocks and arranges them so to allow concurrent threads to process them in parallel. Data partitioning is expensive, in some cases up to 90% of the cost of, e.g., a parallel hash join. In this paper we explore the use of an FPGA to accelerate data partitioning. We do so in the context of new hybrid architectures where the FPGA is located as a co-processor residing on a socket and with coherent access to the same memory as the CPU residing on the other socket. Such an architecture reduces data transfer overheads between the CPU and the FPGA, enabling hybrid operator execution where the partitioning happens on the FPGA and the build and probe phases of a join happen on the CPU. Our experiments demonstrate that FPGA-based partitioning is significantly faster and more robust than CPU-based partitioning. The results open interesting options as FPGAs are gradually integrated tighter with the CPU.

OriginalspracheEnglisch
TitelSIGMOD 2017 - Proceedings of the 2017 ACM International Conference on Management of Data
Herausgeber (Verlag)Association for Computing Machinery
Seiten433-445
Seitenumfang13
ISBN (elektronisch)9781450341974
DOIs
PublikationsstatusVeröffentlicht - 9 Mai 2017
Extern publiziertJa
Veranstaltung2017 ACM SIGMOD International Conference on Management of Data, SIGMOD 2017 - Chicago, USA/Vereinigte Staaten
Dauer: 14 Mai 201719 Mai 2017

Publikationsreihe

NameProceedings of the ACM SIGMOD International Conference on Management of Data
BandPart F127746
ISSN (Print)0730-8078

Konferenz

Konferenz2017 ACM SIGMOD International Conference on Management of Data, SIGMOD 2017
Land/GebietUSA/Vereinigte Staaten
OrtChicago
Zeitraum14/05/1719/05/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „FPGA-based data partitioning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren