Formwork detection in uav pictures of construction sites

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

The monitoring of the construction progress is an essential task on construction sites, which nowadays is conducted mostly by hand. Recent image processing techniques provide a promising approach for reducing manual labor on site. While modern machine learning algorithms such as convolutional neural networks have proven to be of sublime value in other application fields, they are widely neglected by the CAE industry so far. In this paper, we propose a strategy to set up a machine learning routine to detect construction elements on UAV photographs of construction sites. In an accompanying case study using 750 photographs containing nearly 10.000 formwork elements, we reached accuracies of 90% when classifying single object images and 30% when locating formwork on multi-object images.

OriginalspracheEnglisch
TiteleWork and eBusiness in Architecture, Engineering and Construction - Proceedings of the 12th European Conference on Product and Process Modelling, ECPPM 2018
Redakteure/-innenJan Karlshøj, Raimar Scherer
Herausgeber (Verlag)CRC Press/Balkema
Seiten265-271
Seitenumfang7
ISBN (Print)9781138584136
DOIs
PublikationsstatusVeröffentlicht - 2018
Veranstaltung12th European Conference on Product and Process Modelling, ECPPM 2018 - Copenhagen, Dänemark
Dauer: 12 Sept. 201814 Sept. 2018

Publikationsreihe

NameeWork and eBusiness in Architecture, Engineering and Construction - Proceedings of the 12th European Conference on Product and Process Modelling, ECPPM 2018

Konferenz

Konferenz12th European Conference on Product and Process Modelling, ECPPM 2018
Land/GebietDänemark
OrtCopenhagen
Zeitraum12/09/1814/09/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Formwork detection in uav pictures of construction sites“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren