Formulation and solution for the predictive maintenance integrated job shop scheduling problem

Simon Zhai, Alexander Riess, Gunther Reinhart

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

Predictive Maintenance has gained a lot of attention in recent years due to the development of improved sensors and intelligent algorithms. These allow for monitoring the health condition of production machinery and predict its future deterioration. In order to generate added value for industrial use cases, two more steps are required: considering the machine’s time-varying operational conditions and integrating its dependent deterioration prediction in a holistic scheduling approach. This publication identifies a shortage of deterioration estimation frameworks under time-varying operational conditions as well as a lack of Predictive Maintenance integrated scheduling problems in the literature. Subsequently, a new conceptual framework to model future machine deterioration under time-varying operational conditions and its application in production scheduling is introduced. The Operation Specific Stress Equivalent (OSSE) represents the load of a future production job on the machine and supports a general formulation of the maintenance integrated job shop scheduling problem (MIJSSP). This formulation is presented together with benchmark instances and corresponding sample data.

OriginalspracheEnglisch
Titel2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781538683576
DOIs
PublikationsstatusVeröffentlicht - Juni 2019
Veranstaltung2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019 - San Francisco, USA/Vereinigte Staaten
Dauer: 17 Juni 201920 Juni 2019

Publikationsreihe

Name2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019

Konferenz

Konferenz2019 IEEE International Conference on Prognostics and Health Management, ICPHM 2019
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum17/06/1920/06/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Formulation and solution for the predictive maintenance integrated job shop scheduling problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren