ForkNet: Multi-branch volumetric semantic completion from a single depth image

Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

52 Zitate (Scopus)

Abstract

We propose a novel model for 3D semantic completion from a single depth image, based on a single encoder and three separate generators used to reconstruct different geometric and semantic representations of the original and completed scene, all sharing the same latent space. To transfer information between the geometric and semantic branches of the network, we introduce paths between them concatenating features at corresponding network layers. Motivated by the limited amount of training samples from real scenes, an interesting attribute of our architecture is the capacity to supplement the existing dataset by generating a new training dataset with high quality, realistic scenes that even includes occlusion and real noise. We build the new dataset by sampling the features directly from latent space which generates a pair of partial volumetric surface and completed volumetric semantic surface. Moreover, we utilize multiple discriminators to increase the accuracy and realism of the reconstructions. We demonstrate the benefits of our approach on standard benchmarks for the two most common completion tasks: Semantic 3D scene completion and 3D object completion.

OriginalspracheEnglisch
TitelProceedings - 2019 International Conference on Computer Vision, ICCV 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8607-8616
Seitenumfang10
ISBN (elektronisch)9781728148038
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Veranstaltung17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Südkorea
Dauer: 27 Okt. 20192 Nov. 2019

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
Band2019-October
ISSN (Print)1550-5499

Konferenz

Konferenz17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Land/GebietSüdkorea
OrtSeoul
Zeitraum27/10/192/11/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „ForkNet: Multi-branch volumetric semantic completion from a single depth image“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren