Forecasting Characteristic 3D Poses of Human Actions

Christian Diller, Thomas Funkhouser, Angela Dai

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

12 Zitate (Scopus)

Abstract

We propose the task of forecasting characteristic 3d poses: from a short sequence observation of a person, predict a future 3d pose of that person in a likely action-defining, characteristic pose - for instance, from observing a person picking up an apple, predict the pose of the person eating the apple. Prior work on human motion prediction estimates future poses at fixed time intervals. Although easy to define, this frame-by-frame formulation confounds temporal and intentional aspects of human action. Instead, we define a semantically meaningful pose prediction task that decouples the predicted pose from time, taking inspiration from goal-directed behavior. To predict characteristic poses, we propose a probabilistic approach that models the possible multimodality in the distribution of likely characteristic poses. We then sample future pose hypotheses from the predicted distribution in an autoregressive fashion to model dependencies between joints. To evaluate our method, we construct a dataset of manually annotated characteristic 3d poses. Our experiments with this dataset suggest that our proposed probabilistic approach outperforms state-of-the-art methods by 26% on average.

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten15893-15902
Seitenumfang10
ISBN (elektronisch)9781665469463
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 19 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2022-June
ISSN (Print)1063-6919

Konferenz

Konferenz2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum19/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Forecasting Characteristic 3D Poses of Human Actions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren