Force modeling of inhomogeneous material using unsupervised learning and model identification

Chen Zhao, Heinz Ulbrich

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this paper a force modeling method for inhomogeneous materials is introduced. This modeling method is based on samples during haptic operations, for instance presses. Using biomimetic unsupervised learning, the model is primarily identified, including the distribution and material parameters of the inhomogeneous regions, and in this learning the parameter initial estimation, the principal component analysis, the cluster analysis and the quadratic discriminant analysis are applied. Then the material parameters and boundaries of the different regions are accurately optimized using the Gauss-Newton algorithm. Further more the modeling method is tested and verified by a set of simulations. In addition, the suggestions and prospect of the modeling method are also given.

OriginalspracheEnglisch
Titel2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008
Herausgeber (Verlag)IEEE Computer Society
Seiten1319-1324
Seitenumfang6
ISBN (Print)9781424426799
DOIs
PublikationsstatusVeröffentlicht - 2009
Veranstaltung2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008 - Bangkok, Thailand
Dauer: 21 Feb. 200926 Feb. 2009

Publikationsreihe

Name2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008

Konferenz

Konferenz2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008
Land/GebietThailand
OrtBangkok
Zeitraum21/02/0926/02/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Force modeling of inhomogeneous material using unsupervised learning and model identification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren