Force, impedance, and trajectory learning for contact tooling and haptic identification

Yanan Li, Gowrishankar Ganesh, Nathanael Jarrasse, Sami Haddadin, Alin Albu-Schaeffer, Etienne Burdet

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

132 Zitate (Scopus)

Abstract

Humans can skilfully use tools and interact with the environment by adapting their movement trajectory, contact force, and impedance. Motivated by the human versatility, we develop here a robot controller that concurrently adapts feedforward force, impedance, and reference trajectory when interacting with an unknown environment. In particular, the robot's reference trajectory is adapted to limit the interaction force and maintain it at a desired level, while feedforward force and impedance adaptation compensates for the interaction with the environment. An analysis of the interaction dynamics using Lyapunov theory yields the conditions for convergence of the closed-loop interaction mediated by this controller. Simulations exhibit adaptive properties similar to human motor adaptation. The implementation of this controller for typical interaction tasks including drilling, cutting, and haptic exploration shows that this controller can outperform conventional controllers in contact tooling.

OriginalspracheEnglisch
Aufsatznummer8362715
Seiten (von - bis)1170-1182
Seitenumfang13
FachzeitschriftIEEE Transactions on Robotics
Jahrgang34
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Okt. 2018
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Force, impedance, and trajectory learning for contact tooling and haptic identification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren